煤矿智能化开采技术研究与实践分析摘要

毕俊伟

(山西兰花科技创业股份有限公司唐安煤矿分公司)

摘 要:随着我国能源需求的日益增长和科技进步的推动,煤矿智能化开采技术已成为煤炭行业 转型升级的重要方向。本文主要探讨了煤矿智能化开采技术的关键核心技术、应用现状、实践成果及 未来发展趋势。通过对自动化开采、智能监测与预警、大数据与云计算、人工智能等技术的综合分析, 揭示了其在提高开采效率、保障生产安全、推动煤炭行业可持续发展中的重要作用。此外,结合具体 煤矿企业的实践案例,进一步阐述了智能化开采技术的实际应用效果与面临的挑战。最后,文章对煤 矿智能化开采技术的未来发展提出了展望。

关键词:智能化开采;实践应用;人工智能;监测与预警;大数据

1 引言

煤炭作为我国主要的能源资源,其开采技术和 生产效率直接影响到国家的能源安全和经济发展。 传统煤矿开采方式存在诸多弊端,如效率低下、安全 隐患大、环境污染严重等。随着第四次工业革命的 兴起,以物联网、大数据、计算、人工智能为代表的新 一代信息技术与煤炭生产技术深度融合,推动了煤 矿行业的智能化转型。煤矿智能化开采技术不仅能 够显著提高开采效率,降低安全事故发生率,还能够 实现资源的高效利用和环境保护,是煤炭行业实现 可持续发展的重要涂径。

2 煤矿智能化开采技术的关键核心技术

2.1 自动化开采技术

自动化开采技术是煤矿智能化开采的核心技术 之一。通过引入先进的自动化设备和系统,如智能 采煤机、自动化输送系统和支护系统等,实现煤炭开 采的自动化和智能化。这些设备能够自动完成割 煤、运煤、支护等作业流程,大大提高了开采效率和 安全性。以智能采煤机为例,其通过内置的高精度 传感器和智能控制系统,能够实时感知煤层地质条 件,自动调整滚筒高度和截割速度,实现精准截割和 高效开采。

2.2智能监测与预警技术

智能监测与预警技术是煤矿智能化开采安全保障的重要手段。通过在煤矿生产现场安装各类传感器和监测设备,实时监测矿井环境参数和设备运行状态,如瓦斯浓度、温度、压力等,一旦发现异常情况,系统将自动发出预警信号,为采取应对措施提供及时依据。同时,智能监测与预警技术还能够对收集到的数据进行处理和分析,为煤矿安全生产提供决策支持。

2.3大数据与云计算技术

大数据与云计算技术在煤矿智能化开采中发挥着重要作用。通过采集、存储、分析和挖掘海量数据,实现对煤炭资源的优化配置和生产过程的智能决策。云计算技术为煤矿提供了强大的计算和存储能力,支持各类应用系统的稳定运行。同时,大数据分析技术还能够对矿井生产数据进行深度挖掘,发现潜在的生产规律和优化方案,进一步提升开采效率和管理水平。

2.4人工智能技术

人工智能技术在煤矿智能化开采中具有广泛的 应用前景。通过引入机器学习、深度学习等算法,实现设备的智能识别、诊断和预测维护。人工智能技术能够自动分析设备运行数据,预测设备故障并提前采取维护措施,提高设备运行的可靠性和寿命。此外,人工智能技术还能够应用于煤矿安全监管和生产调度等领域,实现生产过程的智能化管理。

3 煤矿智能化开采技术的实践应用

3.1 实践案例:唐安煤矿3307智能化综采工作面

3307智能化综采工作面以液压支架电液控制系统,采煤机控制系统,刮板运输机、转载机、破碎机控制系统,泵站控制系统为基础,以工作面环境监测系统,顶板压力检测系统,惯性导航系统,工作面视

频系统,大型故障诊断系统,安全监测系统为保障,以工作面数据处理为依据,以先进的软件为工控平台,以井下集控、地面远控、系统智能控制为目标,建设成具备自动感知,自动分析,智能控制的,安全高效,节能,少人化的智能综采工作面。主要具备以下功能:

- (1)具有在地面调度中心实时监测控制工作面设备的功能;
- (2)具有在顺槽控制中心对综采工作面设备的 监测和集中控制功能;
 - (3)具有采煤机工况监测和远程控制功能;
 - (4)具有液压支架远程姿态监测和控制功能;
- (5)具有工作面运输设备工况监测和集中控制功能:
 - (6)具有泵站远程控制功能;
- (7)具有对工作面综采设备的数据集成、分析、故障诊断、检修预警及管理功能;
- (8)具有工作面以太网,在工作面实现数据高速传输功能:
- (9)具有工作面视频系统,实现对综采设备和工作面实时监控功能;
 - (10)具有井下井上数据传输功能:
 - (11)具有视频存储和回放功能;
- (12)当综采工作面智能化控制系统出现故障时,由智能化系统实现远程和就地的转换模式,确保指令全部由调度下达,全部受控,并要求有授权。

3.2 实践效果分析

通过智能化开采技术的应用, 唐安煤矿 3307综 采工作面实现了高效、安全、智能化的开采作业, 大 大提高了生产效率和安全性。自动化设备的引入大 幅降低了劳动力需求, 实现了"少人则安、无人则安" 的目标;智能监测与预警系统的应用有效降低了安 全事故发生率; 大数据与云计算技术的应用则提高 了生产决策的科学性和准确性。此外, 智能化开采 技术的应用还促进了煤矿企业的转型升级和可持续 发展。

4 煤矿智能化开采技术面临的挑战与展望

4.1面临的挑战

尽管煤矿智能化开采技术取得了显著成效,但 在实际应用中仍面临一些挑战。首先,技术落后和 缺乏标准规范是当前存在的主要问题。部分煤矿企 业在智能化改造过程中缺乏先进技术和设备支持, 导致改造效果不尽如人意。同时,由于缺乏统一的 标准规范,不同企业之间的智能化水平参差不齐,难 以形成协同效应。其次,人员培训不足也是制约智 能化开采技术推广应用的重要因素。由于智能化设 备操作复杂、技术要求高,部分矿工难以迅速适应和 掌握新技术,导致智能化开采技术的实际应用效果 受到限制。此外,数据安全与隐私保护、备维护与升 级成本、以及智能化系统与现有生产流程的融合等 问题也是煤矿智能化开采技术需要面对的挑战。

4.2未来展望

针对上述挑战,煤矿智能化开采技术的未来发 展应着重从以下几个方面讲行突破:

4.2.1 加强技术研发与创新

持续加大研发投入,推动关键技术突破,如高精 度传感器、智能算法、自主导航等,提高智能化开采 设备的性能和稳定性。同时,加强与科研机构、高校 及上下游企业的合作,形成产学研用协同创新的良 好生态,推动智能化开采技术的不断升级和完善。

4.2.2制定统一标准与规范

建立健全煤矿智能化开采技术的标准和规范体 系,明确技术要求、安全规范、数据格式等,促进不同 企业之间的技术交流与共享,提升行业整体智能化 水平。同时,加强与国际标准的对接,提高我国煤矿 智能化开采技术的国际竞争力。

4.2.3 加强人才培养与培训

加大对煤矿智能化开采技术人才的培养力度通 过设立专项培训计划、开展技能竞赛等方式,提高矿 工对新技术的认知和掌握能力。同时,加强与职业 教育机构的合作,培养一批既懂煤炭开采又懂信息 技术的复合型人才,为煤矿智能化开采提供有力的 人才支撑。

4.2.4 关注数据安全与隐私保护

在推进煤矿智能化开采技术的过程中,要高度 重视数据安全与隐私保护问题。建立完善的数据安 全管理体系,加强数据加密、访问控制、审计追踪等 安全防护措施,确保数据的安全性和隐私性。同时, 加强相关法律法规的建设和执行力度,为数据安全 提供法律保障。

4.2.5 推动智能化系统与生产流程的深度融合深化 智能化开采技术与传统生产流程的融合,通过流程 再造和优化,实现智能化系统与生产流程的无缝对 接。利用大数据分析、云计算等技术手段,对生产过 程中的各个环节进行精细化管理和优化决策,提高 生产效率和经济效益。同时,注重智能化系统的可 维护性和可扩展性,确保系统能够随着生产需求的 变化而不断升级和完善。

5 结论

煤矿智能化开采技术是推动煤炭行业转型升级 和可持续发展的关键力量。通过自动化开采、智能 监测与预警、大数据与云计算、人工智能等技术的综 合应用,煤矿企业能够显著提高开采效率、降低安全 事故发生率、实现资源的高效利用和环境保护。然 而,在实际应用中仍面临技术落后、标准缺失、人才 不足等挑战。因此,需要不断加强技术研发与创新、 制定统一标准与规范、加强人才培养与培训、关注数 据安全与隐私保护以及推动智能化(下转第14页)

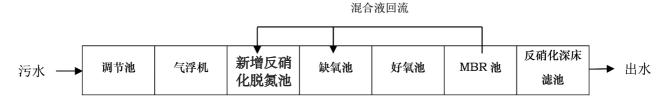


图2 新增反硝化池后主体工艺流程

氧池总容积由640m³增至1624m³,缺氧区停留时间由10h增至28.3h,水力停留时间满足反硝化反应条件。

增设后的主体工艺流程为见图2。

4 改造后运行效果

2023年5月缺氧池提标改造完成并开始调试,为了确保原系统污泥浓度,不影响系统正常运行,新增前置反硝化池补充了30吨新鲜市政脱水活性污泥,然后再并人原系统,通过实时调整碳源投加量、回流比、MBR池DO和排泥量等措施,满足缺氧池反硝化反应的最佳条件。目前A/A/O-MBR工艺运行状况良好,出水指标基本能达到山西省《污水综合排放标准》(DB14/1928-2019)排放限值的要求。

5 核算运行成本

本次运行成本仅核算新增脱氮系统后增加的运 行成本,原系统运行成本不做核算;

1)电费:新增用电运行负荷约593.26kwh;电费

按0.5元计,吨水增加运行成本0.2元;

- 2)水质达标后可选择性回用作为尿素循环水或 合成循环水的补给用水,年均节水量保守估计36万 m³左右;
- 3)提标改造后,总氮浓度大大降低,总氮污染物浓度每年削减量约40吨/年;
- 4)药剂费:新增药剂为甲醇残液,小时投加量为79.2kg(公司自产甲醇残液,未作计算)。

6 结论

污水站改造在不停产的条件下,通过扩大缺氧池池容,新增回流泵、碳源装置、及末端增加反硝化深床滤池等措施,大大提升了系统的脱氮能力。提标改造后出水中CODer、NH₃-N、TN和TP基本稳定达到山西省《污水综合排放标准》(DB14/1928-2019)的排放限值的要求,出水水质稳定性增强。不足之处是未将化工工艺废水水质波动大的影响考虑周全,调节池池容偏小的问题没有纳入此次改造的范围内,致使因进水水质波动大,偶尔出现出水指标波动。

(上接第25页)

系统与生产流程的深度融合等工作,以推动煤矿智能化开采技术的持续发展和广泛应用。

参考文献:

[1]李晓明.煤矿智能化开采技术现状及发展趋势[J]. 煤炭工程,2023,(5):1-6.

- [2]张伟,王刚.基于大数据的煤矿安全生产监测预警系统研究[J].矿业安全与环保,2022,49(6):57-61.
- [3]陈伟.人工智能在煤矿设备故障诊断中的应用[J]. 煤炭科学技术,2021,49(10):222-228.
- [4]国家能源局.煤矿智能化建设指南(2021年版)[Z]. 北京:国家能源局,2021.

14 呈花科技 | 2024.6(总第97期)